SENRI ETHNOLOGICAL STUDIES 63: 199-220 ©2003 Hunter-Gatherers of the North Pacific Rim Edited by J. Habu, J.M. Savelle, S. Koyama and H. Hongo

Pottery Production and Circulation at the Sannai Maruyama Site, Northern Japan: Chemical Evidence from Early and Middle Jomon Pottery

Junko Habu
Department of Anthropology
University of California at Berkeley
Mark E. Hall
Niigata Prefectural Museum of History
Masayuki OGASAWARA
Archaeological Center of Aomori Prefecture

This paper examines issues concerning the production and circulation of Early and Middle Jomon pottery in the Tohoku region of northern Japan. An attempt is made to determine whether the copious amounts of pottery found at the Sannai Maruyama site were produced locally (i.e., made either at Sannai Maruyama or in the near vicinity), or were brought in from other areas. Using energy-dispersive x-ray fluorescence (EDXRF), we measure minor and trace element composition of 58 pottery samples from Sannai Maruyama and three other Early and Middle Jomon sites (Futatsumori, Korekawa Ichioji and Hatanai) in the Tohoku region. Clay samples from the Sannai Maruyama site are also analyzed. Multivariate analysis of variance (MANOVA), linear discriminant analysis (LDA) with cross-validation, and step-wise discriminant analysis (SDA) with cross-validation are the statistical techniques used to analyze the chemical data. The results support the hypothesis that the majority of the pots examined in this study, including those excavated from Sannai Maruyama, were produced locally, and not imported from other areas. This study also highlights the importance of minor and trace element analysis for the geochemical differentiation of pottery.

INTRODUCTION

The purpose of this paper is to examine the production and circulation of Early and Middle Jomon pottery in the Tohoku region of northern Japan through chemical analysis of the pottery. The central question that we are asking in this paper is whether pottery excavated from the Sannai Maruyama site, which is located in the northern part of the Tohoku region, was made locally (i.e., either at Sannai Maruyama or in the vicinity), or brought in from elsewhere.

Sannai Maruyama is a large prehistoric site dated primarily to the Early and Middle Jomon periods. Radiocarbon dates indicate that the site was occupied from approximately 5050 to 3900 uncalibrated b.p., or 5900 to 4300 calibrated B.P. [TSUJI 1999]. Salvage excavations of the site from 1992 to 1994, which were to precede the construction of a baseball stadium, revealed that the entire area planned for the stadium was actually underlain by diverse features from the Early and Middle Jomon periods [OKADA 1995]. Because of the importance of this archaeological

discovery, the governor of Aomori Prefecture halted construction of the stadium and declared that the site would be preserved. Subsequent test excavations at the site revealed that the actual site area extends outside the planned stadium area [HABU and FAWCETT 1999]. To date, more than 700 pit-dwellings, and many other features, have been identified at the site. Chronological seriation of pottery from the pit-dwellings indicates that not all the pit-dwellings were occupied simultaneously. Nevertheless, the size of the site seems unusually large compared to other Early and Middle Jomon settlements [for details of the site, see HABU 2002, n.d.; HABU et al. 2001; OKADA, this volume.]

Of particular interest to archaeologists is an abundance of artifacts recovered from the Sannai Maruyama site. The 1992 to 1994 excavations yielded more than 40,000 cardboard boxes (approximately 40 x 30 x 25 cm) of excavated materials [Okada 1995]. The majority of these were potsherds. Traditionally, many Japanese scholars have assumed that Jomon pottery, at least pottery from the Incipient to Middle Jomon periods, was produced separately at each site where it was found. However, because of the abundance of pottery found at the Sannai Maruyama site, some scholars recently began to question this interpretation. They have suggested that Sannai Maruyama was a trade center where large amounts of exotic goods and everyday commodities, including pots, were exchanged. The presence of artifacts made from exotic materials such as jade and obsidian, neither of which is available near Sannai Maruyama, suggests that long-distance trade was undertaken by the Sannai Maruyama residents. However, very few systematic analyses have been conducted regarding the possible exchange of pottery and other commodities.

As a first step to address this issue, we conducted a preliminary study of the minor and trace element variability in Jomon pottery from four sites in the Tohoku Region. The sites selected were Sannai Maruyama, Futatsumori, Korekawa Ichioji and Hatanai, all of which are located within Aomori Prefecture. All pottery samples examined date to the Early and Middle Jomon periods.

THEORETICAL BACKGROUND

As has been demonstrated elsewhere (e.g., Pollard and Heron 1996), chemical analysis of pottery is an effective way to examine the issues of pottery production and circulation. While there have been some chemical studies of Jomon pottery [e.g., Ishikawa 1988, 1989; Mitsuji and Inoue 1984; Ninomiya *et al.* 1990], only a limited number of these studies have specifically focussed on pottery production and circulation [e.g., Habu and Hall 1999].

Behind much of the research in chemical studies of archaeological ceramics is the assumption that chemical characteristics of the clay used to manufacture the pottery reflect the local geological environment. The principal raw material in the production of pottery is clay, which is usually collected from sub-surface deposits. Since clay chemistry typically reflects the local geological environment, clays collected in different regions tend to exhibit different chemical characteristics [Harbottle and Bishop 1992: 27; Jones 1986: 5-9; Mommsen et al. 1988; Steponaltis et al. 1996: 555-560; Wilson 1978: 220-221]. Therefore, if we assume that prehistoric potters used local clay to manufacture their pottery [Arnold 1992:160, see also for example King et al. 1986: 362-363; Zedeno 1994: 14-21, 50-51], we can expect that prehistoric

pots made in different regions have different chemical characteristics.

While this seems straightforward, there are several other factors that need to be taken into consideration. First, variability in clay chemistry is not necessarily a function of the distance between different clay sources. If the geological environment of a particular region is composed of many different rock types, then clays collected within the same region may have large chemical variability. Conversely, if the geological environments of two or more geographic regions are not significantly different, the clay chemistry between the regions may be similar. Second, clay is not necessarily the only raw material used to make pottery. Potters usually add one or more types of temper, such as sand, fiber, and shell fragments, to the clay. Since various types of temper may affect the overall chemical characteristics of pottery, chemical differences between pots may reflect differences in temper, not clay.

With these caveats in mind, demonstrated differences in the chemical composition of separate pieces of pottery could correspond to either (1) specific clay deposits, (2) regional clay deposits, (3) production workshops, or groups of potters who used similar raw materials and prepared the clay in similar fashion, or (4) a combination of two or more of these [ARNOLD et al. 1991: 84-88; CLARK et al. 1992; COSTIN 1991]. On the other hand, if there are no clear differences between separate pieces of pottery, it may imply that they were made at the same geographic locality, but there is also a possibility that they were made at different localities associated with geochemically similar raw materials.

Because of these complexities, provenience studies of pottery from historical periods typically use kiln samples (potsherds excavated from production sites) as comparative specimens [e.g., Habu 1989]. At the first stage of the analysis, chemical characteristics of kiln samples are examined. Once these characteristics are known, it is much easier to provenience samples from consumer sites to specific production areas. However, most prehistoric pottery, including Jomon pottery, was open-fired without using kilns. As a result, there are no proven specimens from production sites that can be used as reference materials. While one can still identify chemical similarities and differences between different groups of pottery, there is no method of determining a priori the number of sources in the pottery samples examined, nor the dissimilarity between the sources.

Despite these problems, we suggest that the chemical characterization of Jomon pottery can provide insights into pottery production and circulation. The hypothesis that we test in this paper is the following: if Jomon potters in the Tohoku region produced and used much of their own pottery locally, we should expect to find statistically significant differences in the chemical composition between pottery samples from different sites. If this hypothesis is rejected (i.e., if there are no statistically significant differences), it would suggest either (1) the Jomon potters used raw materials that were geochemically similar, or (2) pottery was part of a trade/exchange/redistribution network between settlements.

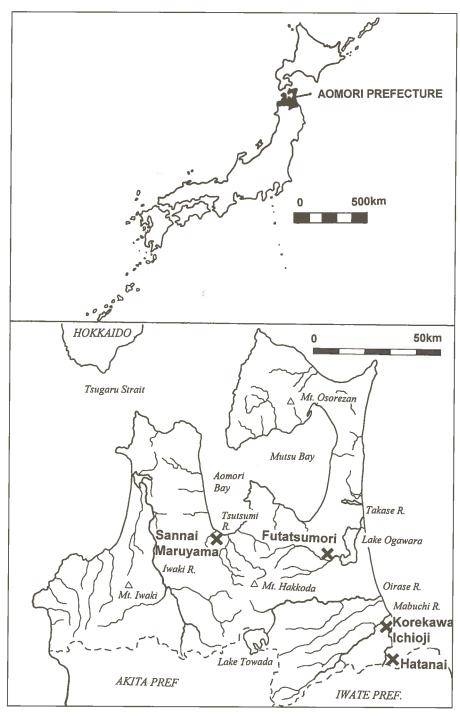
To test the hypothesis, the methodology advocated by Vitali and co-workers [VITALI and FRANKLIN 1986; VITALI et al. 1987] was employed. This methodology uses discriminant analysis and multivariate analysis of variance (MANOVA) to examine the relationships between chemical variation, site location and time. Unlike correspondence analysis (CA) and other ordination methods, these tests cannot be used to determine the number of groups in a given data set. The groups in the data must be assumed a priori.

SITES AND ARCHAEOLOGICAL MATERIALS

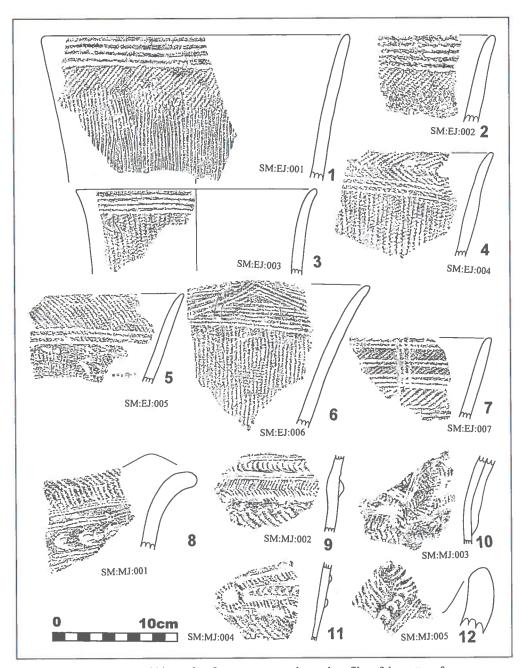
Figure 11.1 shows the locations of the four sites analyzed in this paper. Sannai Maruyama is located in Aomori City, on the southeast bank of the Okidate River, which runs into Aomori Bay. Details of the site are outlined in Okada's paper (this volume), as well as by Kidder [1998], Habu [2002, n.d.] and Habu *et al.* [2001]. A total of 30 pottery samples excavated at the site by three different institutes were analyzed in this paper. Figure 11.2 shows 12 potsherds excavated by the Board of Education of Aomori Prefecture. Figure 11.2.1 through 7 date to the Early Jomon period, whereas Figure 11.2.8 to 12 are from the Middle Jomon period. Figure 11.3 shows ten sherds excavated by Keio University during the 1960s. These sherds date to the Middle Jomon period. Finally, Figure 11.4 illustrates 18 Early Jomon potsherds recovered from the columnar soil sample collected in the 6th Test Excavation Area by the Berkeley Sannai Maruyama Project. In addition to these potsherd samples, 13 clay samples collected from natural deposits at the site were also analysed as possible source materials for potsherds at the site.

The second site, the Futatsumori shell-midden, is located in Kamikita Town, on the east terrace of the Akagawa River near Lake Ogawara [AOMORI PREFECTURAL MUSEUM OF LOCAL HISTORY 1992]. Although the site spans both the Early and Middle Jomon periods, the four potsherds examined here (Figure 11.5) were all dated to the Early Jomon period. These samples were surface collections.

The third site, Korekawa Ichioji (abbreviated as Ichioji in Tables 11.1 and 11.4), is located in Hachinohe City, on the west bank of the Niida River, about six kilometers away from the present-day coastline. The site is part of the famous Korekawa site complex, including Korekawa Ichioji, Nakai and Hotta. Potsherds examined in this paper (Figure 11.6) are all from the Ichioji area of the site complex, dating to the Middle Jomon period.


Finally, the Hatanai site is located in the upper valley of the Niida River in Nango Village, Sannohe County. Surveys and salvage excavations of the site prior to construction of the Yomasari dam, which is part of the Reclamation and Construction Plans of the Hachinohe Plain, revealed that the area was an Early and Middle Jomon settlement associated with large earthen middens with numerous potsherds [Archaeological Center of Aomori Prefecture 1994, 1995, 1996, 1997, 1999, 2000]. Pottery samples examined from the site (Figure 11.7) are all from the Early Jomon period.

COMPOSITIONAL ANALYSIS


Methodology

The minor and trace element composition of the clay and pottery examined in this study was determined using energy dispersive x-ray fluorescence (EDXRF). EDXRF is a low-cost method that can be used to accurately measure elements with atomic numbers 11 through 41, and some of the rare earth elements [HAMPEL 1984: 21-22; POTTS 1987: 312-313].

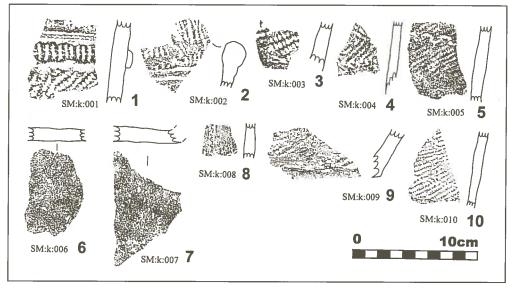

The elemental analyses were performed using a Spectrace 440 EDXRF machine equipped

Figure 11.1 Map of Japan showing the location of Aomori Prefecture (upper), and map of Aomori Prefecture with four sites mentioned in the text (lower).

Figure 11.2 Rubbings of surface treatment and vessel profiles of the pottery from the Sannai Maruyama site (excavated by the Board of Education of Aomori Prefecture).

Figure 11.3 Rubbings of surface treatment and vessel profiles of the pottery from the Sannai Maruyama site (excavated by Keio University).

with a rhodium x-ray tube and a Tracor TX 6100 x-ray analyzer. The x-ray tube was operated at 30 kV, 20 mA in air at 250 seconds livetime to generate x-ray intensity data for the elements copper (Cu), gallium (Ga), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), niobium (Nb), rubidium (Rb), strontium (Sr), thorium (Th), titanium (Ti), yttrium (Y), zinc (Zn), and zirconium (Zr). The x-ray beam size was 0.5 cm to 0.75 cm in diameter. X-ray intensity data for barium (Ba), cerium (Ce), lanthanum (La), and neodymium (Nd) were generated by using an americium (241 Am) gamma-ray source for 500 seconds livetime in air. The $K\alpha$ and $L\alpha$ x-ray intensity line data were converted to concentration values using a Compton scatter matrix correction and the linear regression of a set of Geological Survey of Japan (GSJ), National Bureau of Standards (NBS), National Institute of Standards and Technology (NIST), and United States Geological Survey (USGS) mineral standards. Inter-element effects are accounted for by using the Lucas-Tooth and Price (1961) correction.

The detection limits, as determined using geological standards [SHACKLEY 1995], are as follows: Ba 20 ppm, Ce 20 ppm, Cu 10 ppm, Fe 10 ppm, Ga 7.8 ppm, La 20 ppm, Mn 40 ppm, Nb 8 ppm, Nd 20 ppm, Ni 10 ppm, Pb 8 ppm, Rb 5 ppm, Sr 3.5 ppm, Th 9 ppm, Ti 23 ppm, Y 7 ppm, Zn 4 ppm, and Zr 7 ppm. A comparative study between the EDXRF facility at the University of California at Berkeley with the Research Reactor Facility at the University of Missouri shows that EDXRF can obtain the same sensitivity, precision and accuracy as neutron activation for the alkali, alkaline earth and transition metals in a silicic matrix [SHACKLEY 1998: 267].

To monitor the operation of the EDXRF unit, standards of known composition were run with the unknowns (results in Appendix). Using the Bishop et al. [1990] definitions for precision and accuracy, our precision was 10% or less for all elements, and the analytical

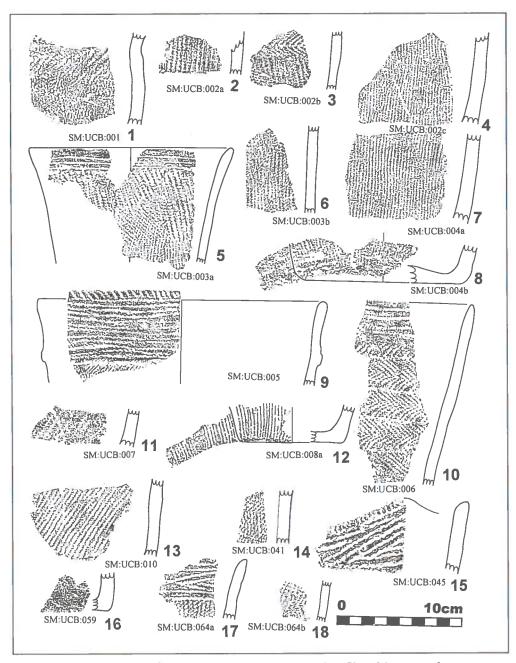
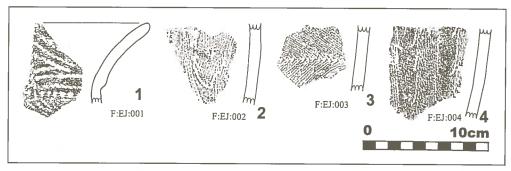



Figure 11.4 Rubbings of surface treatment and vessel profiles of the pottery from the Sannai Maruyama site (excavated by the Berkeley Sannai Maruyama Project).

Figure 11.5 Rubbings of surface treatment and vessel profiles of the pottery from the Futatsumori shell-midden.

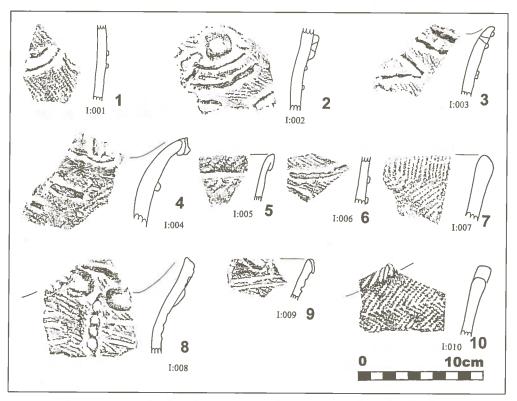
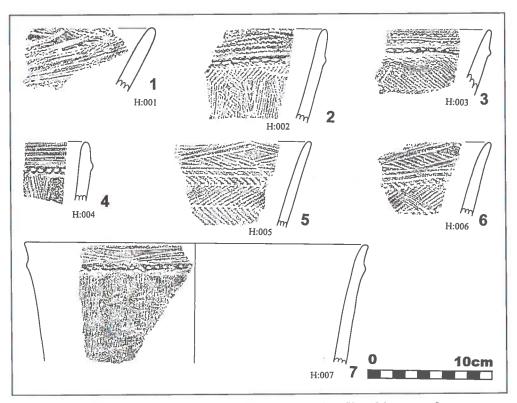



Figure 11.6 Rubbings of surface treatment and vessel profiles of the pottery from the Korekawa Ichioji site.

Figure 11.7 Rubbings of surface treatment and vessel profiles of the pottery from the Hatanai site.

accuracy for most elements was 15% or less. The accuracy was calculated as follows:

|(standard value - mean value)| * 100% / standard value

Precision was calculated in an analogous fashion. These numbers are good since they are a measure of the difference between a standard value and an observed value.

Destructive EDXRF analysis was not permitted for the sherds from Hatanai and Korekawa Ichioji. Accordingly, only non-destructive analyses were conducted. Before irradiation, each potsherd was rinsed with distilled, de-ionized water, scrubbed with a nylon brush, and then rinsed with distilled, de-ionized water again. The sherds were allowed to air dry. In most cases, the x-ray analysis was conducted on the cross-section of the sherds. The clay samples were formed into a flat pellet with the aid of a hand press and fired at 850°C for one hour and allowed to cool in the furnace over night.

We do not regard postdepositional chemical alteration as a major concern. Raw clay has a cation-exchange capacity of only 1% to 5% [Hedges and McLellan 1976], and fired clay has an even much lower cation-exchange capacity. Because of this, scholars such as Bishop *et al.* [1982] and Hedges and McLellan [1976] assert that the trace element concentrations are not

significantly altered by post-depositional processes (for details, see Habu and Hall [2001: 150]). All statistical operations were performed with SPSS Release 8.0.

Compositional Data and Analysis

Table 11.1 contains the minor and trace element data for each sample. All values are listed in parts per million (ppm). Table 11.2 contains the minor and trace element data for the fired clay samples from Sannai Maruyama.

The elemental values were transformed to log base 10 values. This transformation compensates for the differences in magnitude between minor and trace elements [Peisach et al. 1982: 355-356; Pollard 1986: 69-71; Wilson 1978: 226,227]. For cases below the detection limit, one half the detection limit was used in the transformation and subsequent data analysis.

A multivariate analysis of variance (MANOVA) was performed to assess the overall variance in the data set [see Nouršis 1993: 57-95; Sharma 1996: 342-371]. The goals of this analysis were to see (1) if the log-transformed population means of the chemical variables are the same for the four sites, and (2) whether location or time period, or the combination of both factors, accounts for the variability in the data. The variance is evaluated by means of F-values, which are defined as the ratio of between-group to within-group variance for the elements under consideration. An F-value can range from 0 to infinity. The larger the F-value, the more significant a factor or combination of factors is in accounting for the variance [VITALI et al. 1987: 428-429]. Akin to the Student's t-test or the chi-square test, the significance of the Fvalues is evaluated against the F-distribution. In this study, the F-values were determined using Pillai's trace statistic. Statistical studies have demonstrated that F-values based on Pillai's trace are exceedingly robust and detect true differences in the data [Sharma 1996: 348]. The etasquared test statistic, which indicates the proportion of the variability each factor or combination of factors represents, is also calculated [Noursis 1993:41]. A value near 0 indicates the factor represents little of the variance in the data. A value near 1 indicates that nearly 100% of the variability is accounted for by the factor.

Table 11.3 contains the results of the MANOVA test. The clay samples from Sannai Maruyama were not included in the MANOVA test since the deposit could have been exploited at any time, and not necessarily in the Jomon period. While the *F*-values for both the time period and site location are statistically significant at the 95% confidence level, most variance in the data is due to site location: the eta-squared test statistic indicates that site location accounts for nearly 70% of the variability in the data.

Discriminant analysis [see Baxter 1994a: 185-218, 1994b] was performed to assess separation between the four sites and see which subset of variables separates the four groups best. In linear discriminant analysis (LDA), it is assumed that unique groups exist in the data and linear combinations of variables that maximize the differences between groups are sought. Stepwise discriminant analysis (SDA) adds or deletes variables in a set of criteria so that group separation is maximized. This method results in the removal of variables that can blur the distinctions between groups. More realistic classification rules were then obtained using a cross-validation algorithm [Baxter 1994b]. In this "leave one out" process, each sample was allocated to a group on the basis of discriminant functions that were calculated without the sample.

Table 11.1 Minor and trace element composition of the pottery sherds (ppm).

SAMPLE#	SITE	PHASE	ï	Mn	Fe	ž	<u>ನ</u>	Zu	Ča	P	Lh L	Rb	ž	X	17		Da Da	e e	<u>ء</u>	מאו
F.EJ.001	Futatsumori	Early Jomon	8012	511	23603	24	42	500	21	20	13	115	250	22	152	16	641	22	pu	pu
F-EJ:002	Futatsumori	Early Jomon	8062	349	27002	21	32	123	17	25	10	55	358	33	180	8	1387	29	pu	pu
F-EJ:003	Futatsumori	Early Jomon	8513	649	21995	26	37	92	27	34	16	74	81	24	211	=	375	pu	pu	pu
F.EJ:004	Futatsumori	Early Jomon	11250	602	34206	19	377	80	27	28	pu	58	169	22	216	15	305	pu	pu	pu
H:001	Hatanai	Early Jomon	13560	537	51067	33	28	125	26	29	pu	40	82	19	215	14	391	pu	49	pu
H:002	Hatanai	Early Jomon	10290	398	41101	25	25	109	24	22	13	33	116	19	195	Ξ	276	pu	34	pu
H:003	Hatanai	Early Jomon	10970	311	46409	40	23	4	30	20	13	51	139	24	263	00	382	26	pu	22
H:004	Hatanai	Early Jomon	7991	285	30379	17	21	95	24	17	pu	22	104	20	133	pu	293	pu	29	pu
H:005	Hatanai	Early Jomon	8747	323	26621	19	39	121	22	25	pu	55	150	22	186	12	384	pu	pu	pu
H:006	Hatanai	Early Jomon	7635	293	25334	25	24	186	24	20	pu	11	124	70	172	pu	389	pu	pu	pu
H:007	Hatanai	Early Jomon	9805	366	35332	29	21	6	32	27	19	99	114	18	181	15	354	pu	37	pu
1:001	Ichioji	Middle Jomon	6942	340	37586	40	37	267	20	30	14	92	317	30	167	6	939	20	99	24
1:002	Ichioji	Middle Jomon	11420	623	53161	16	73	182	23	25	pu	75	277	25	149	pu	671	pu	pu	20
1:003	Ichioji	Middle Jomon	8922	486	43798	20	167	191	18	20	pu	63	279	32	125	ы	712	pu	43	21
1:004	Ichioji	Middle Jomon	9034	211	37849	17	09	210	19	27	pu	53	263	52	158	Ξ	966	39	63	46
1:005	Ichioji	Middle Jomon	6336	313	31074	19	141	288	91	25	19	84	202	21	178	Ξ	591	20	41	pu
1:006	Ichioji	Middle Jomon	9299	940	51855	22	40	261	22	42	pu	83	274	28	177	14	916	pg	39	28
1:007	Ichioii	Middle Jomon	9419	1359	54866	12	151	356	18	33	pu	73	315	32	158	Ξ	875	20	pu	21
1:008	Ichioji	Middle Jomon	12194	229	31520	36	51	180	39	55	16	72	469	47	190	pu	006	28	73	34
1:009	Ichioji	Middle Jomon	8284	289	43950	15	50	216	19	23	pu	99	263	23	156	14	839	pu	33	22
1:010	Ichioji	Middle Jomon	11277	544	49564	26	142	326	21	45	pu	62	417	47	171	pu	898	23	51	25
SM:EJ:001	Sannai Maruyama	Early Jomon	11026	752	36279	pu	38	114	23	38	16	132	275	56	212	_	2142	pu	19	40
SM:EJ:002	Sannai Maruyama	Early Jomon	1699	438	31183	32	46	137	24	37	19	71	159	9	216	12	1560	20	55	36
SM:EJ:003	Sannai Maruyama	Early Jomon	8990	360	22412	27	25	114	17	28	14	51	518	38	178	-	3090	23	47	49
SM:EJ:004	Sannai Maruyama	Early Jomon	7603	617	39083	31	38	140	23	37	11	93	211	39	239	-	2318	pu	48	42
SM:EJ:005	Sannai Maruyama	Early Jomon	5148	226	17161	25	37	108	19	29	10	72	503	32	197	12 4	4369	24	99	73
SM:EJ:006	Sannai Maruyama	Early Jomon	7473	216	25837	30	73	92	19	35	13	107	217	33	216	\rightarrow	2225	59	9	43
SM:EJ:007	Sannai Maruyama	Early Jomon	6824	233	15822	23	62	57	21	23	pu	71	191	24	166	\rightarrow	1471	pu	31	22
SM:k:001	Sannai Maruyama	Middle Jomon	10348	419	48585	26	41	161	29	48	19	91	139	34	254	70	763	pu	46	56
SM:k:002	Sannai Maruyama	Middle	6950	467	33022	16	65	167	25	35	15	88	203	26	163	01	1033	pu	38	56
SM:k:003	Sannai Maruyama	Middle	7750	629	39686	24	30	78	27	37	15	81	164	39	212	12	682	pu	49	26
SM:k:004	Sannai Maruyama	Middle	6101	288	28852	21	58	92	21	32	12	66	153	22	156	12	543	23	40	22
SM:k:005	Sannai Maruvama	Middle	6902	235	37069	15	32	69	16	36	13	41	180	25	158	6	831	pu	28	24
SM:k:006	Sannai Maruyama	Middle Jomon	8649	265	36257	30	39	150	26	34	15	29	169	4	225	91	626	21	47	29
SM:k:007	Sannai Maruyama	Middle	8378	296	37559	26	52	195	28	40	10	85	153	34	213	6	1224	22	54	34
SM:k:008	Sannai Maruyama	Middle	7269	238	39334	19	31	150	26	23	12	52	167	34	183	6	849	23	41	27
SM:k:009	Sannai Maruyama Middle		8866	488	34854	14	24	149	24	30	pu	58	242	27	174	=	904	20	30	24
010.1.010	Charles Management National		0770	627	07633	;	i		1	00					-		4 1			7

SM:MJ:001	SM:MJ:001 Sannai Maruyama Middle	Middle Jomon	7210	273	28063	21	24	65	28	38	pu	74 1	145 2	27 20	200	11 32	346 2	22 nd	25
SM:MJ:002	SM:MJ:002 Sannai Maruyama Middle	Middle Jomon	7123	297	30900	29	75	49	23	42	14	91 1	126 2	28 15	193	12 36	L	L	
SM:MJ:003	Sannai Maruyama Middle	Middle Jomon	9899	180	35759	37	13	93	26	30	10	65 1	131 2	27 19	190	16 36		_	pu
SM:MJ:004	SM:MJ:004 Sannai Maruyama	Middle Jomon	9611	497	40705	53	26	132	36	30	11	67 1	141 3		201	-		L	
SM:MJ:005	SM:MJ:005 Sannai Maruyama	Middle Jomon	6929	309	37126	26	37	77	25	39	12 1	108	126 2	25 18	185	15 34	347 n	pu pu	
SM:UCB:001	SM:UCB:001 Sannai Maruyama	Early Jomon	6169	9/9	40927	48	4	87	21	43	17	86 2	236 3	37 15	155	12 981	H	20 49	
SM:UCB:002	SM:UCB:002 Sannai Maruyama	Early Jomon	7923	593	29163	33	34	9/	22	39	16	48 2	201 2	27 18	183	14 7	771 n	nd 36	
SM:UCB:002	SM:UCB:002 Sannai Maruyama	Early Jomon	6222	446	25209	17	34	75	19	30	17	46 2	208 3	34 17	175	12 60	909 u	_	
SM:UCB:002	SM:UCB:002 Sannai Maruyama	Early Jomon	6119	549	35450	39	30	227	31	40	17	17 1	191 3	L	L	_	L	Ĺ	22
SM:UCB:003	SM:UCB:003 Sannai Maruyama	Early Jomon	6507	999	38361	18	24	172	29	38	16	97 2	219 3	36 17	175	13 82	821 27	7 52	_
SM:UCB:003	SM:UCB:003 Sannai Maruyama	Early Jomon	6853	653	37400	37	26	191	28	39	21	93 2	231 3	39 18	184	11 82		Ľ	
SM:UCB:004	SM:UCB:004 Sannai Maruyama	Early Jomon	7372	579	40545	27	42	118	22	39	91	69 2	208 3	37 18	183 r	nd 78	L		27
SM:UCB:004	SM:UCB:004 Sannai Maruyama	Early Jomon	6025	622	34810	29	32	212	27	47	22 1	107 2	215 3	33 16	1 991	16 66	665 2	27 48	
SM:UCB:005	SM:UCB:005 Sannai Maruyama	Early Jomon	6550	954	39158	33	48	196	24	43	20	71 2	280 4	42 16	167	15 1285		26 47	
SM:UCB:006	SM:UCB:006 Sannai Maruyama	Early Jomon	9019	1128	41575	33	54	132	23	49	14	54 2	261 3	36 20	206	8 1394		25 52	
SM:UCB:007	SM:UCB:007 Sannai Maruyama	Early Jomon	9772	808	71413	pu	20	59	23	37	16	38 1	161	19 18	183	9 1078		nd 32	24
SM:UCB:008	SM:UCB:008 Sannai Maruyama	Early Jomon	6119	790	27709	39	22	94	20	39	=	1 09	151 3	31 15	159	9	662 21		
SM:UCB:010	SM:UCB:010 Sannai Maruyama	Early Jomon	6130	483	33363	14	25	154	25	31	15	57 1	159 2	26 18	182	10 64	646 n	nd 30	
SM:UCB:041	SM:UCB:041 Sannai Maruyama	Early Jomon	7346	1084	42736	11	25	96	23	51	01	37 2	286 2	28 19	195	nd 1661	_	Ĺ	
SM:UCB:045	SM:UCB:045 Sannai Maruyama	Early Jomon	6735	623	40042	22	33	62	25	43	14	92 2	213 3	36 161	_	14 86	868 23	3 49	
SM:UCB:059	SM:UCB:059 Sannai Maruyama	Early Jomon	6207	770	35511	21	33	128	21	41	13	1 69	156 4	42 16	169	11 36	361 nd	d 40	_
SM:UCB:064	SM:UCB:064 Sannai Maruyama	Early	6227	584	34930	15	61	120	24	49	12	4	190	31 21	215	10 79	pu 562		
SM:UCB:064	SM:UCB:064 Sannai Maruyama	Early Jomon	5475	318	19811	17	16	20	16	09	17	47 2	218 2	28 15	157	10 67	pu 229	J 32	
D.T																			

Note: "nd"stands for not detected.

Table 11.2 Minor and trace element composition of the Sannai Maruyama clay (ppm).

	1	í	2 3	ï		1	ę r	h.	ï		i i		
PN	23	26	30			31			24	28	26	24	22
o Ce	51	53	46	47	4	55	48	53	45	53	53	4	56
La	25	24	28	20	pu	25	22	pu	pu	26	24	21	29
Ba	647	9/9	637	573	537	625	573	572	569	595	508	502	029
^Q N	13	Ξ	10	19	13	17	13	15	12	12	15	18	000
Zr	223	227	206	221	209	231	223	223	222	219	219	215	218
>	34	36	33	35	36	34	34	29	36	33	30	30	36
Sr	156	170	165	175	151	168	157	148	165	146	153	134	174
Rb	139	137	124	130	116	137	139	139	133	143	132	141	Ξ
Д	14	12	16	19	12	20	15	18	16	21	13	16	17
Pb	52	4	47	48	42	51	52	52	57	48	50	40	47
Ga	26	.23	25	29	56	21	26	27	29	24	22	29	30
Zn	111	108	98	901	80	94	111	96	104	95	95	86	101
Cu	20	23	17	59	18	81	20	17	6	19	21	17	40
ï	56	18	18	16	25	17	26	24	16	30	59	19	22
Fe	50126	53018	47853	53208	46293	54942	51898	47915	54066	99/05	52556	48863	57689
Mn	1252	1383	1365	1382	1294	1489	1252	1049	1279	1178	1277	826	1875
Ti	8512	8673	7570	8740	7375	9443	8512	7801	8809	7671	8051	7419	8814
SITE	Sannai Maruyama-clay												
SAMPLE#	clay01	clay02	clay03	clay04	clay05	clay06	clay07	clay08	clay09	clay10	clay11	clay 12	clay 13

0.000

Site Phase

Site*Phase

 Pillai's Trace
 F-value
 Eta²

 2.09
 5.21
 0.697

 0.63
 3.70
 0.630

0.000

Table 11.3 Multivariate analysis of variance results.

undefined

Looking at site location, LDA with cross-validation resulted in 77% of the cases being correctly classified. The misclassified cases are listed in Table 11.4. A plot of the cross-validated discriminant functions is in Figure 11.8. For a probability of *F*-to-enter of 0.05, a probability of *F*-to-remove equal to 0.10, and maximizing the Wilks' lambda score between groups, SDA with cross-validation correctly classified 85% of the cases. The following log-transformed elements were identified as the most important discriminators: Cu, Nd, Pb, Sr, Ti, Zn, and Zr. The misclassified cases for the SDA with cross-validation are also listed in Table 11.4.

Finally, Figure 11.8 also plots the discriminant scores for the 13 clay samples from the Sannai Maruyama site. While the discriminant functions do associate the Sannai Maruyama clay samples with the Sannai Maruyama pottery samples, the discriminant scores for pottery samples have more spread. In other words, the minor and trace element characteristics of the clay samples are more homogenous than those of the pottery samples.

DISCUSSION

The F-statistic from the MANOVA test and the results from the discriminant analysis tests indicate that the log-transformed population means of the chemical variables for the four sites differ, and that most variance in the data is due to site location. LDA and SDA with cross-validation resulted in 77% and 85% of the cases being correctly classified respectively. These results support the hypothesis that the majority of the pottery samples examined here are likely to have been produced locally.

Among the four sites, the Futatsumori shell-midden had the highest percentage of misclassified samples (75% in both LDA and SDA). The large variability among Futatsumori sherds is illustrated in Figure 11.4. Unfortunately, because the sample size from this site is extremely small (only four samples), no definite conclusions can be drawn from these particular results. The percentage of misclassified samples from the Korekawa Ichioji site using LDA with cross-validation (40%) was also high, but in SDA with cross-validation, the percentage misclassified was only 10%. This difference (40% vs. 10%) is likely due to the fact that SDA only uses the variables that can discriminate between groups [see BAXTER 1994a: 212-213]. The percentages for misclassified samples from the Sannai Maruyama and Hatanai sites were relatively low: 15% (LDA with cross-validation) and 10% (SDA with cross validation) for Sannai Maruyama, and 14% in both methods for Hatanai.

The discriminant functions indicate association of natural clay samples from Sannai Maruyama with pottery samples from the same site. This supports our interpretation that Jomon potters at Sannai Maruyama used local clay resources. It must be emphasized, however, that matching a clay source to a ceramic group on geochemical grounds is not always straightforward

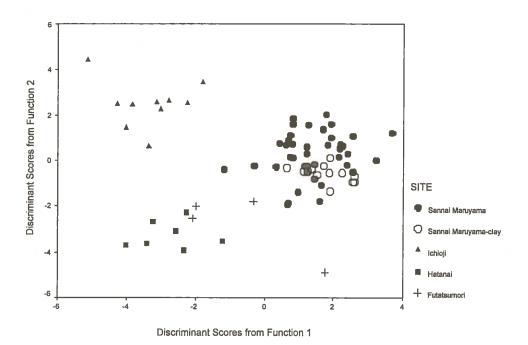


Figure 11.8 Plot of the first two discriminant functions obtained from linear discriminant analysis with cross validation.

 Table 11.4
 Misclassified cases from the discriminant analysis for groups based on site location.

Sample No.	Actual Group	Predicted Group, LDA with cross validation	Predicted Group, SDA with cross validation
F:EJ:001	Futatsumori	With bross variation	Ichioji
F:EJ:002	Futatsumori	Sannai Maruyama	i i i i i i i i i i i i i i i i i i i
F:EJ:003	Futatsumori	Sannai Maruyama	Hatanai
F:EJ:004	Futatsumori	Ichioji	Ichioji
H:005	Hatanai	Futatsumori	Futatsumori
I:004	Ichioji	Sannai Maruyama	
I:005	Ichioji	Futatsumori	Futatsumori
I:007	Ichioji	Futatsumori	
I:008	Ichioji	Sannai Maruyama	
SM:EJ:003	Sannai Maruyama	Futatsumori	Hatanai
SM:EJ:007	Sannai Maruyama	Futatsumori	
SM:K:009	Sannai Maruyama	Hatanai	
SM:K:010	Sannai Maruyama		Futatsumori
SM:MJ:003	Sannai Maruyama		Hatanai
SM:MJ:004	Sannai Maruyama	Futatsumori	
SM:UCB:002a	Sannai Maruyama	Futatsumori	Futatsumori
SM:UCB:002c	Sannai Maruyama	Hatanai	

Note: A blank entry indicates that the specimen was not misclassified.

[ADAN-BAVYEWITZ and PERLMAN 1985; ARNOLD et al. 2000; SUMMERHAYES 1997]. In the present study, natural clay samples were obtained from only one location near the site, and little attention was paid to the depth from which the samples were taken. Ideally, clay samples should be taken from several locations throughout a clay deposit to fully document geochemical variation within the deposit. Thus, the spread of discriminant scores for the Sannai Maruyama pottery observed so far could be due to either geochemical variation in a single clay deposit, or the mixing of clays and tempers from elsewhere with the clay from the site. Further research is needed to assess these posibilities.

The misclassified cases in discriminant analysis could have a variety of causes. One possibility is that the misclassified samples indeed belong to their predicted geochemical groups. This could mean that some pots were moved between sites. Kojo's [1981] petrographic study indicates that an average of 20 to 30 % of the pottery at Moroiso-b phase sites in central Japan was imported. The overall percentage misclassified in the present study is in this range, and could reflect cases of pottery movements between sites. Therefore, it is possible that the misclassified samples actually belong to the cross-validated groups predicted by LDA and SDA.

Alternatively, the misclassified samples may not belong to the predicted groups. Although both MANOVA and LDA/SDA assume that actual chemical groups have been recognized in the data set, this assumption may be inappropriate: some samples may have been from chemical groups that are not represented by any of the four groups.

The misclassified cases may be due to the use of different tempers, or of more than one clay source, at a given site. Petrographic analysis can provide further insights as to the clay "recipes" used, while beryllium and lead isotopes can be used to provenance the specific clays used in pottery [IMAMURA et al. 1998].

Misclassification could also be due to similarity in the chemistry of regional clay sources. For example, since the Futatsumori and Sannai Maruyama sites are both located in areas of Holocene and Quaternary muds, sands and gravels that were formed primarily by the erosion of the Ou mountains [Japanese Geological Survey 1982: 9], it is possible that the chemical characteristics of clays in or near the two sites are geochemically similar. Quantitative petrography could possibly address whether this is an issue or not.

Finally, another possibility is that misclassification and overlap between groups was due to the accuracy and precision of the EDXRF analyses. Bishop *et al.* [1990: 540] and Wilson [1978: 222] note that when the accuracy and/or precision of an analytical method are greater than 5%, the analytical method sometimes masks the statistical differences between groups. Further analyses, using a technique such as neutron activation analysis, will be necessary in order to clarify these issues.

Our results using SDA with cross-validation indicated that Cu, Fe, Ga, Mn, Nd, Pb, Ti, Zn and Zr are the most important discriminating elements. Other than iron and titanium, all these elements occur at trace levels. Past x-ray fluorescence (XRF) studies of Jomon pottery by Japanese scholars have focussed on measuring major and minor elements. This study, as well as our previous studies [HABU and HALL 1999, 2001], emphasizes the importance of minor and trace element analysis for sourcing Jomon pottery.

CONCLUSION

In conclusion, although the analysis presented here is still preliminary, the results do support the hypothesis that most pots excavated from Sannai Maruyama were made locally, with little if any introduction of pottery from other areas. The results of our study also demonstrate the importance of minor and trace element analysis, as opposed to only the study of major elements, for distinguishing pottery made in different areas.

In order to investigate why large amounts of pottery were produced at the Sannai Maruyama site, we need to consider site functions in relation to subsistence, settlement, religion and social networks [HABU 2002, n.d.; HABU et al. 2001). Future chemical analyses should include (1) more systematic testing for changes through time in the chemical composition of pottery, (2) further comparison with other Jomon sites in the vicinity of Sannai Maruyama, (3) investigation of possible correlations between stylistic variation and the chemical composition of pottery, and (4) analyses of clay artifacts other than pots, such as clay figurines.

Because of its extraordinarily large size and the abundance of associated artifacts, the archaeological study of the Sannai Maruyama site has attracted the attention of many scholars [e.g., KIDDER 1998; UMEHARA and YASUDA 1995]. As recent studies [e.g., HABU 2002, n.d.; HABU et al. 2001; OKADA, this volume] indicate, however, the intra-site spatial patterns, as well as their changes through time, are extremely complex, and we are just beginning to understand the structural complexity. Although the results presented here deal with only one specific research question regarding pottery production and circulation, we hope that our research will help to clarify the nature and function of this extremely interesting Jomon site.

APPENDIX Values obtained for RGM-1 Standard (ppm).

Element	RGM-1 (Govindaraju 1994)	RGM-1, this study (n=7)
Ba	807	798
Се	47	45
Cu	11.6	17
Fe ₂ O ₃	18600	19000
Ga	15	15
La	24	26
MnO	360	349
Nb	8.9	12
Nd	19	26
Ni	4.4	6
Pb	24	23
Rb	149	148
Sr	108	102
Th	15.1	16
TiO ₂	2670	2810
Y	25	31
Zn	32	39
Zr	219	218

ACKNOWLEDGMENTS

We would like to thank Steve Shackley for reviewing a draft of this manuscript. We would also like to thank the Board of Education of Aomori Prefecture, Jomon Gakushu-kan of Hachinohe City, and the Department of Ethnology and Archaeology of Keio University for providing us with the potsherd samples. Any errors, of course, are ours.

BIBLIOGRAPHY

ADAN-BAVYEWITZ, D. and I. PERLMAN

1985 Local pottery provenience studies: a role for clay analysis. Archaeometry 27: 203-217.

AOMORI PREFECTURAL MUSEUM OF LOCAL HISTORY [Aomori Kenritsu Kyodo-kan]

1992 Shell-middens Adjacent to Lake Ogawara: Excavtion Reports of the Yamanaka No. 2 Shell-midden in Misawa City, and the Futatsumori Shell-midden in Tenmabayashi Village [Ogawara-ko shuhen no Kaizuka: Misawa-shi Yamanaka (2) Kaizuka, Tenmabayashi-mura Futatsumori Kaizuka Hakkutsu Chosa Hokoku]. Aomori: Aomori Prefectural Museum of Local History. (In Japanese)

ARCHAEOLOGICAL CENTER OF AOMORI PREFECTURE [Aomori-ken Maizo Bunkazai Chosa Center]

- 1994 *The Hatanai Site* Vol. I [Hatanai Iseki, I]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].
- 1995 *The Hatanai Site*, Vol. II [Hatanai Iseki II]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].
- 1996 *The Hatanai Site*, Vol. III [Hatanai Iseki, III]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].
- 1997 *The Hatanai Site*, Vol. IV [Hatanai Iseki, IV]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].
- 1999 The Hatanai Site, Vol. V [Hatanai Iseki, V]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].
- 2000 *The Hatanai Site*, Vol. VI [Hatanai Iseki, VI]. Aomori: Board of Education of Aomori Prefecture [Aomori-ken Kyoiku Iinkai].

ARNOLD, Dean

1992 Commentary on Section II. In Hector Neff (ed.), *Chemical Characterization of Ceramic Pastes in Archaeology*. Monographs in World Archaeology, No. 7. Madison: Prehistory Press. pp. 159-166.

ARNOLD, D. E., H. NEFF, and M. D. GLASCOCK

2000 Testing assumptions of neutron activation analysis: communities, workshops and paste preparation in Yucatan, Mexico. *Archaeometry* 42: 301-316.

ARNOLD, Dean, Hector NEFF, and Ron BISHOP

1991 Compositional analysis and 'sources' of pottery: an ethnoarchaeological approach. *American Anthropologist* 93: 70-90.

BAXTER, Mike

1994a Exploratory Multivariate Analysis in Archaeology. Edinburgh: Edinburgh University Press. 1994b Stepwise discriminant analysis in archaeometry: a critique. Journal of Archaeological Science

21: 659-666.

BISHOP, Ronald, Robert L. RANDS, and George HOLLEY

1982 Ceramic compositional analysis on archaeological perspective. In M. Schiffer (ed.), *Advances in Archaeological Method and Theory*, Vol. 5. Tucson: University of Arizona Press. pp. 275-330.

BISHOP, Ron, Velatta CANOUTS, Patricia Crown, and Suzanne De ATLEY

1990 Sensitivity, precision, and accuracy: their roles in ceramic compositional data bases.

*American Antiquity 55: 537-546.

CLARK, Caven P., Hector NEFF, and Michael GLASCOCK

1992 Neutron activation analysis of Late Woodland ceramics from the Lake Superior Basin. In H. Neff (ed.), Chemical Characterization of Ceramic Pastes in Archaeology. Monographs in World Archaeology No. 7. Madison: Prehistory Press. pp. 255-268.

COSTIN, Cathy

1991 Craft specialization: issues in defining, documenting, and explaining the organization of production. In M. Schiffer (ed.), *Archaeological Method and Theory*, Vol. 3. Tucson: University of Arizona Press. pp. 1-56.

GOVINDARAJU, K.

1994 1994 compilation of working values and sample description for 383 geostandards. Geostandards Newsletter 18: 1-158.

HABU, Junko

1989(ed.) Report of the No. 7 Science Building Area Excavation at the Hongo Campus of the University of Tokyo [Tokyo Daigaku Hongo Konai no Iseki, Rigakubu 7 go kan Chiten]. Tokyo: University of Tokyo. (In Japanese with English summary)

2002 A life-history of the Sannai Maruyama site: changes in site function, residential mobility and cultural landscape. In Shiro Sasaki (ed.), New Perspectives on the Study of Prehistoric Hunter-Gatherer Cultures. Senri Ethnological Reports 30. Osaka: National Museum of Ethnology. pp. 161-183. (In Japanese)

n.d. Ancient Jomon of Japan. Cambridge: Cambridge University Press. (In press)

HABU, Junko and Clare FAWCETT

1999 Jomon archaeology and the representation of Japanese origins. Antiquity 73: 587-593.

HABU, Junko and Mark E. HALL

1999 Jomon pottery production in central Japan. Asian Perspectives 38(1): 90-110.

2001 Jomon pottery production at Honmura-cho and Isarago sites, Insights from geochemistry. *Anthropological Science* 109(2): 141-166.

HABU, Junko, Minkoo Kim, Mio Katayama, and Hajime Komiya

2001 Jomon subsistence-settlement systems at the Sannai Maruyama site. Bulletin of the Indo-Pacific Prehistory Association 21: 9-21.

HAMPEL, Joachim

1984 Technical considerations in X-ray fluorescence analysis of obsidians. In R. E. Hughes (ed.), Obsidian Studies in the Great Basin. Contributions of the University of California Archaeological Research Facility, No. 45. Berkeley: Archaeological Research Facility, University of California. pp. 21-25. HARBOTTLE, Garman and Ronald BISHOP

1992 Commentary on technique. In H. Neff (ed.), *Chemical Characterization of Ceramic Pastes in Archaeology*. Monographs in World Archaeology No. 7. Madison: Prehistory Press. pp. 27-29.

HEDGES, R. E. M. and M. McLELLAN

1976 On the cation exchange capacity of fired clays and its effect on the chemical and radiametric analysis of pottery. *Archaeometry* 18(2): 203-207.

IMAMURA, M., M. SAKAMOTO, T. SAITO, and M. NISHITANI

1998 Provenance study of ancient earthenwares based on Be isotopes. Paper presented at the 9th International Congress of Geochemistry, Beijing.

ISHIKAWA, Ryuji

1988 Fabric analyses of pottery recovered from the No. 57 site [No. 57 iseki shutsudo doki no taido bunseki. Tama New Town No. 57 iseki]. In Tokyo Board of Education (ed.), *The Tama New Town No. 57 Site* [Tama New Town No. 57 Iseki]. Tokyo: Tokyo Board of Education. (In Japanese)

Ishikawa, Ryuji

1989 Approaches to understanding pottery groups of different ceramic traditions [Ikeito doki-gun rikai e no approach]. *Shellmounds* [Kaizuka] 42: 1-12. (In Japanese)

JAPANESE GEOLOGICAL SURVEY

1982 Geological Atlas of Japan. Tokyo: Japanese Geological Survey.

JONES, Richard E.

1986 Greek and Cypriot Pottery: A Review of Scientific Studies. Athens: The British School at Athens.

KIDDER, J. Edward Jr.

1998 The Sannai Maruyama site: new views on the Jomon period. *Southeast Review of Asian Studies* 20: 29-52.

KILIKOGLOU, V., Y. MANIATIS and A. P. GRIMANIS

1988 The effect of purification and firing of clays on trace element provenance studies.

Archaeometry 30:37-46.

KING, R. H., D. W. RUPP, and L. W. SORENSON

1986 A multivariate analysis of pottery from southwestern Cyprus using neutron activation analysis data. *Journal of Archaeological Science* 13: 361-374.

KoJo, Yasushi

1981 Inter site pottery movements in the Jomon Period. *Journal of the Anthropological Society of Nippon* 89: 27-54.

LUCAS-TOOTH, H. J. and B. J. PRICE

1961 A mathematical method for the investigation of inter-element effects in X-ray fluorescent analyses. *Metallurgia* 64(383): 149-152.

MITSUJI, Toshikazu and Akio INOUE

1984 Fabric analyses of clays and Jomon pottery [Nendo oyobi Jomon doki no taido]. In The Excavation Team of the Ohashi 2-chome Site [Meguro-ku Ohashi 2-chome Iseki Chosakai] (ed.), *The Ohashi Site, Meguro Ward, Tokyo* [Tokyo-to Meguro-ku Ohashi Iseki] . Tokyo: Meguro Ward. pp. 93-107. (In Japanese)

MOMMSEN, H., A. KREUSER, and J. WEBER

1988 A method for grouping pottery by chemical composition. Archaeometry 30: 47-57.

NINOMIYA, Shuji, Minoru WARASHINA, Junko HABU, and Masumi OSAWA

1990 Chemical analyses of Jomon pottey excavated from the Isarago shellmidden site, with special references to Moroiso Style pottery [Isarago Kaizuka Iseki shutsudo Jomon doki bunseki-kagakuteki kenkyu: Moroiso shiki doki o chushin ni]. Paper presented at the 7th Annual Meeting of the Japanese Society on Cultural Property, Tokyo. (In Japanese)

Norušis, Marija

1993 SPSS for Windows: Advanced Statistics, Release 6.0. Chicago: SPSS.

OKADA, Yasuhiro

1995 Ento doki bunka no kyodai shuraku [A large settlement from the Ento Pottery Culture: the Sannai Maruyama site in Aomori Prefecture]. *Kikan Kokogaku* [Archaeology Quarterly] 50: 25-30. (In Japanese)

PEISACH, M., L. JACOBSON, G. J. BOULLE, D. GIHWALA, and L. G. UNDERHILL

1982 Multivariate analysis of trace elements determined in archaeological materials and its use for characterisation. *Journal of Radioanalytical Chemistry* 69: 349-364.

POLLARD, A. Mark

1986 Data analysis. In R. E. Jones (ed.), Greek and Cypriot Pottery: A Review of Scientific Studies. Athens: The British School at Athens. pp. 15-96.

POLLARD, A. Mark and Carl HERON

1996 The geochemistry of clays and the provenance of ceramics. *In Archaeological Chemistry*. Royal Society of chemistry, Cambridge. pp. 104-147.

POTTS, Philip J.

1987 A Handbook of Silicate Rock Analysis. New York: Chapman and Hall.

SHACKLEY, M. Steven

1995 Sources of archaeological obsidian in the Greater American Southwest: an update and quantitative analysis. *American Antiquity* 60: 531-553.

1998 Gamma-rays, X-rays, and stone tools: some recent advances in archaeological geochemistry. *Journal of Archaeological Science* 25: 259-270.

SHARMA, Subhash

1996 Applied Multivariate Techniques. New York: John Wiley and Sons, Inc.

SUMMERHAYES, Glenn

1997 Losing your temper: the effect of mineral inclusions on pottery analyses. *Archaeology in Oceania* 32: 108-117.

STEPONAITIS, Vincas, M. James BLACKMAN, and Hector NEFF

1996 Large-scale patterns in the chemical composition of Mississippian pottery. *Antiquity* 61: 555-572.

Tsuл, Seiichiro

1999 Chronology at the Sannai Maruyama site using a high precision ¹⁴C dating method [Koseido ¹⁴C nendai sokutei niyoru Sannai Maruyama iseki no hennen]. *Chikyu* Special Issue 26: 32-38. (In Japanese)

TUBB, A. A., J. PARKER, and G. NICKLESS

1980 The analysis of Romano-British pottery by atomic absorption spectrophotometry.

Archaeometry 22(2): 153-171.

UMEHARA Takeshi and Yoshinori Yasuda (eds.)

1995 Discovery of the Jomon Civilization: New Discoveries at the Sannai Maruyama Site [Jomon bunka no Hakken: Kyoi no Sannai Maruyama Iseki]. Tokyo: PHP Kenkyujo. (In Japanese)

VITALI, Vanda and Ursula M. FRANKLIN

1986 New approaches to the characterization and classification of ceramics on the basis of their elemental composition. *Journal of Archaeological Science* 13: 161-170.

VITALI, Vanda, J. W. SIMMONS, Elizabeth HENRICKSON, L. D. LEVINE, and Ronald G. HANCOCK

1987 A hierarchical taxonomic procedure for provenance determination: a case study of Chalcolithic ceramics from the Central Zagros. *Journal of Archaeological Science* 14: 423-435.

WILSON, A. L

1978 Elemental analysis of pottery in the study of its provenance: a review. *Journal of Archaeological Science* 5: 219-236.

ZEDEÑO, Maria Nieves

1994 Sourcing Prehistoric Ceramics at Chodistaas Pueblo, Arizona. Anthropological Papers of the University of Arizona, No. 58. Tucson: University of Arizona Press.